

Instructional Routines for Mathematics Intervention

The purpose of these mathematics instructional routines is to provide educators with materials to use when providing intervention to students who experience difficulty with mathematics. The routines address content included in the grades 2-8 Texas Essential Knowledge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on different mathematical content. Each of the 23 modules include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicitly with the aim of improving mathematics outcomes for students.

Copyright © 2021. Texas Education Agency. All Rights Reserved.
Notwithstanding the foregoing, the right to reproduce the copyrighted work is granted to Texas public school districts, Texas charter schools, and Texas education service centers for nonprofit educational use within the state of Texas, and to residents of the state of Texas for their own personal, non-profit educational use, and provided further that no charge is made for such reproduced materials other than to cover the out-of-pocket cost of reproduction and distribution. No other rights, express or implied, are granted hereby.

For more information, please contact Copyrights@tea.texas.gov.

Instructional Routines for Mathematics Intervention

MODULE 12

Multiplication of Rational Numbers

Module 12: Multiplication of Rational Numbers Mathematics Routines

A. Important Vocabulary with Definitions

Term	Definition
algorithm	A set of steps to solve a problem.
decimal	A number based on powers of ten.
denominator	The term in a fraction that tells the number of equal parts in a whole.
equal groups	Groups with the same number of objects or items in each group.
equal sign	The symbol that tells you that two sides of an equation are the same, balanced, or equal.
equivalent	Two numbers that have the same value.
factor	A number that you multiply with another number to get the product.
fraction	A number representing part of a whole or set.
hundredths	The digit in representing $\frac{1}{100}$.
improper fraction	Any fraction in which the numerator is greater than the denominator.
mixed number	A whole number and a fraction combined.
multiply/multiplication	The process of adding a number to itself a number of times.
multiplication sign	The symbol that tells you to multiply.
numerator	The term in a fraction that tells how many parts of a fraction.
ones	The digit representing 1.
partial products	The product of parts of each factor.
product	The result of multiplying two or more factors.
regroup/trade/exchange	The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.
tenths	The digit in representing $\frac{1}{10}$.

B. Background Information

Background Information:

In this module, we focus on multiplication with fractions and decimals. As you focus on computation of rational numbers, continue to emphasize multiplication as equal groups and multiplication as comparison because students will see these concepts within word problems.

For multiplication of fractions, we recommend using several models of fractions to help students understand concepts related to multiplication of fractions. We also recommend demonstrating several algorithms for multiplication of decimals. Every student should develop efficiency with strategies for multiplication of fractions and decimals. In the following sections, we provide examples of (1) multiplication of fractions, (2) multiplication of decimals with the traditional algorithm, and (3) multiplication of decimals with the partial products algorithm.

C. Routines and Examples

(1) Multiplication of Fractions*

*Most students know the procedure for multiply decimals but do not have conceptual understanding of multiplication of fractions. Here, we provide two conceptual Routines (one with manipulatives and one with drawings) as well as a procedural Routine. Our Example is conceptual and uses manipulatives. Consider reading the Example before reading the Routines.

Routine

Materials:

- Module 12 Problem Sets
- Module 12 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching
- A hands-on tool or manipulative like fraction tiles or two-color counters
- Note that drawings can be used alongside or instead of manipulatives

ROUTINE WITH MANIPULATIVES
(Only use manipulatives with simpler problems)
Teacher Let's work on multiplication. What does it mean to multiply?
Students To make equal groups or to compare.
Teacher Multiplication means to make equal groups or to compare. Look at this problem.
(Show problem.)
Teacher \quad First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students To multiply.

Teacher	Let's do this problem with fraction tiles. (Move fraction tiles to workspace.)
Teacher	With multiplication of fractions, we interpret this problem as \qquad (first fraction) of \qquad (second fraction). How do we interpret this problem?
Students	_ of __.
Teacher	We want to determine \qquad (first fraction) of \qquad (second fraction). If you wanted to determine half of 8 , you would show 8 and then find half of that amount. The same works with fractions. We'll show the second fraction (or factor) and then find the first fraction of the second fraction. Which fraction will we show?
Students	Second fraction.
Teacher	So, let's show the second fraction with the fraction tiles. (Show second fraction with fraction tiles.)
Teacher	Now, let's find \qquad (first fraction) of \qquad (second fraction). There are several ways to do this, but an easy way is to find \qquad (first fraction) of each one- \qquad (second fraction denominator) part. Let's focus on one- \qquad part at a time. What should we focus on?
Students	One-__ part.
Teacher	Let's just think about this one- \qquad part (second fraction denominator). What's \qquad (first fraction) of this part?
Students	
Teacher	If that's hard to answer, think about it this way. What's \qquad (first fraction) times one- \qquad (second fraction denominator)?
Students	-'
Teacher	\qquad (first fraction) of this one- \qquad part (second fraction denominator) would be \qquad . Let's place that/those fraction tiles on top of the onepart. (Place fraction tiles.)
Teacher	Now, I do that again for each one- \qquad part. I find \qquad (first fraction) of each one- \qquad part. (Place fraction tiles.)
Teacher	We're multiplying by finding \qquad (first fraction) of each of the one- \qquad parts. How are we multiplying?
Students	Finding __ (first fraction) of each of the one-__ parts.
Teacher	We've determined \qquad (first fraction) of each of the one- \qquad parts with the fraction tiles, these are our partial products. What are these?
Students	Partial products.
Teacher	Let's add the partial products to determine the final product. What should we add?
Students	The partial products.
Teacher	We have __ plus __ plus That equals __. Say that with me.
Students	
Teacher	So, \qquad (first fraction) of \qquad (second fraction) equals \qquad . What's the product?

Students
Teacher
Students
Teacher

Students Teacher
Students
Teacher
Students

Teacher
Students

Teacher

Teacher First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students
Teacher
Students

Students Teacher

Students Teacher
—.
_ times \qquad equals \qquad Let's say that together. times \qquad equals \qquad
So, if you have a set of __ (second fraction) and you determine __ (first fraction) of the second fraction, __ times __ equals __. Let's review. What's a factor?
The numbers multiplied in a multiplication problem.
What's a product?
The result of multiplying factors.
How could you explain multiplying of fractions to a friend?
We used fraction tiles to show the second fraction. Then, we found the first fraction of the second fraction to determine the product.

ROUTINE WITH DRAWING

(Only use drawings with simpler problems)
Let's work on multiplication. What does it mean to multiply? To make equal groups or to compare.
Multiplication means to make equal groups or to compare. Look at this problem.
(Show problem.)

To multiply.
Let's do this problem by drawing. What could we use to draw? Pencil and graph paper.
I like to use a pencil and graph paper when I draw fractions. Good idea. Now, with multiplication of fractions, we interpret this problem as _ (first fraction) of _ (second fraction). How do we interpret this problem?
_-.
We want to determine __ (first fraction) of __
\qquad (second fraction). For example, if you wanted to determine one-third of 12, you would show 12 cupcakes and then find one-third of the 12 cupcakes. The same works with fractions. We'll show the second fraction (or factor) and then find the first fraction of the second fraction. Which fraction will we show?
Second fraction.
So, let's draw the second fraction. Today, I'll draw a rectangle, divide that rectangle into __ equal parts (denominator from second fraction) and shade in _ parts (numerator from the second fraction).
(Draw fraction and shade with pencil.)

Teacher	Now, let's find \qquad (first fraction) of \qquad (second fraction). There are several ways to do this, but an easy way is to find \qquad (first fraction) of each one- \qquad (second fraction denominator) part. Let's focus on one- \qquad part at a time. What should we focus on?
Students	One-__ part at a time.
Teacher	Let's just think about this one- \qquad part (second fraction denominator). The first fraction has a denominator of \qquad . What's the denominator?
Students	
Teacher	Let's divide this one- \qquad part (second fraction denominator) into \qquad equal parts (first fraction denominator) by drawing. (By drawing, mark \qquad equal parts.)
Teacher	Now, what's the numerator of the first fraction?
Students	
Teacher	\qquad
Teacher	Now, I do that again for each one- \qquad part. I draw and highlight or color _ (first fraction) of each one- \qquad part (second fraction denominator). (Mark equal parts and highlight or color \qquad equal parts.)
Teacher	Even though we only focused on determining \qquad (first fraction) of \qquad (second fraction), I want to divide any non-shaded parts of the second fraction into equal parts of the first fraction. This will help us learn of the denominator for the product. (By drawing, mark \qquad equal parts.)
Teacher	We're multiplying by finding \qquad (first fraction) of each of the one- \qquad parts (second fraction denominator). How are we multiplying?
Students	Finding _ (first fraction) of each of the one-_ parts.
Teacher	We've determined \qquad (first fraction) of each of the one- \qquad parts by highlighting or coloring. Those are our partial products. Now, let's add the partial products to determine the final product. What should be add?
Students	The partial products.
Teacher	We have _ plus _ plus That equals _ . Say that with me.
Students	
Teacher	So, \qquad (first fraction) of __ (second fraction) equals \qquad \qquad . What's the product?
Students	—.
Teacher	_ times _ equals _ . Let's say that together.
Students	_ times __ equals __.
Teacher	So, if you have a set of \qquad (second fraction) and you determine \qquad (first fraction) of the second fraction, \qquad times \qquad equals \qquad . Let's review. What's a factor?
Students	The numbers multiplied in a multiplication problem.

Teacher	What's a product?		
Students			
Teacher			
Students		\quad	The result of multiplying factors.
:---			
How could you explain multiplying of fractions to a friend?			
We drew the second fraction. Then, we highlighted the first fraction of			
each of the one-__ parts. Those were our partial products. We added the			
partial products to determine the product of __ and __.			

Teacher So, if you have a set of __ (second fraction) and you determine __ (first fraction) of the second fraction, __ times __ equals __. Let's review. What's a factor?
Students The numbers multiplied in a multiplication problem.
Teacher
Students
Teacher
What's a product?
The result of multiplying factors.
How could you explain multiplying of fractions to a friend?
Students We multiplied the numerators. Then, we multiplied the denominators. The product was \qquad _.

Example

$$
\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}
$$

Step 1: Show second fraction (three-fourths).

Step 2: Find the first fraction (one-half) of each one-fourth part.

EXAMPLE WITH MANIPULATIVES

Teacher Let's work on multiplication. What does it mean to multiply?
Students To make equal groups or to compare.
Teacher Multiplication means to make equal groups or to compare. Look at this problem.
(Show problem.)
Teacher First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students To multiply.
Teacher Let's do this problem with fraction tiles.
(Move fraction tiles to workspace.)
Teacher With multiplication of fractions, we interpret this problem as $\frac{1}{2}$ of $\frac{3}{4}$. How do we interpret this problem?
Students $\quad \frac{1}{2}$ of $\frac{3}{4}$.
Teacher Because we want to determine one-half of three-fourths, we show $\frac{3}{4}$. What fraction do we show?
(Show 3 one-fourth parts compared to a whole.)
Students $\frac{3}{4}$.

Teacher Now, let's find $\frac{1}{2}$ of $\frac{3}{4}$. I could do the multiplication by multiplying $\frac{1}{2}$ of $\frac{1}{4}$ to find $\frac{1}{2}$ of each $\frac{1}{4}$ part. Let's see. If I have $\frac{1}{4}$, what's $\frac{1}{2}$ of $\frac{1}{4}$?
Students $\quad \frac{1}{8}$.
Teacher Yes, if I divide a $\frac{1}{4}$ part in half, that would be $\frac{1}{8}$. I'll place one $\frac{1}{8}$ piece on top of the $\frac{1}{4}$ part.
(Place one $\frac{1}{8}$ piece on a $\frac{1}{4}$ part.)
Teacher Now, I do that again for each $\frac{1}{4}$ part. I find $\frac{1}{2}$ of each $\frac{1}{4}$ part.
(Place one $\frac{1}{8}$ piece on each $\frac{1}{4}$ part.)
Teacher We're multiplying by finding $\frac{1}{2}$ of each of the three $\frac{1}{4}$ parts or $\frac{3}{4}$. How are we multiplying?
Students Finding $\frac{1}{2}$ of each of the three $\frac{1}{4}$ parts.
Teacher Now that we've determined $\frac{1}{2}$ of each $\frac{1}{4}$ part, let's add the $\frac{1}{8}$ pieces to determine the product. What should we add?
Students The $\frac{1}{8}$ pieces.
Teacher \quad We have $\frac{1}{8}$ plus $\frac{1}{8}$ plus $\frac{1}{8}$. That's $\frac{3}{8}$. Say that with me.
Students $\frac{3}{8}$.
Teacher So, $\frac{1}{2}$ of $\frac{3}{4}$ equals $\frac{3}{8}$. What's the product?
Students $\frac{3}{8}$.
Teacher $\quad \frac{1}{2}$ times $\frac{3}{4}$ equals $\frac{3}{8}$. Let's say that together.
Students $\quad \frac{1}{2}$ times $\frac{3}{4}$ equals $\frac{3}{8}$.
Teacher So, if you have a set of $\frac{3}{4}$ and you find $\frac{1}{2}$ of the three-fourths, $\frac{1}{2}$ of $\frac{3}{4}$ equals $\frac{3}{8}$. Let's review. What's a factor?
Students The numbers multiplied in a multiplication problem.
Teacher What's a product?
Students The result of multiplying factors.
Teacher How could you explain multiplying of fractions to a friend?
Students We used fraction tiles to show the second fraction. Then, we found the first fraction of the second fraction to determine the product.

(2) Multiplication of Decimals with Traditional Algorithm

Routine

Materials:

- Module 12 Problem Sets
- Module 12 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

2-DIGIT × 2-DIGIT: ROUTINE WITHOUT MANIPULATIVES

Teacher Let's work on multiplication. What does it mean to multiply?
Students To make equal groups or to compare.
Teacher Multiplication means to make equal groups or to compare. Look at this problem.
(Show problem.)
Teacher First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students To multiply.
Teacher Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the ones and the tenths. Let's draw a vertical line between the ones column and the tenths column.
(Draw vertical lines to separate place value columns.)
Teacher Now, we start by multiplying the tenths of the second factor. This means we'll write these products starting in the tenths column below the equal line. Where will we write the products?
Students Below the equal line in the tenths.
Teacher We first multiply the tenths of the second factor times the tenths of the first factor. What should we multiply first?
Students The tenths of the second factor times the tenths of the first factor.
Teacher Which tenths do we multiply?
Students times \qquad _.

Students
What's \qquad times \qquad
(If a student has difficulty with multiplication, use a multiplication table or other resource.)
\qquad
-
\square times \qquad equals \qquad . Let's write \qquad below the equal line in the tenths column. IF REGROUPING: Our product is greater than 9, so we have to regroup. That means we write the ones in the tenths place and regroup the tens above the ones column.
(Write product.)

Teacher	Now, we multiply the tenths of the second factor times the ones of the first factor. What do we multiply?
Students	The tenths of the second factor times the ones of the first factor.
Teacher	So, what do we multiply?
Students	_ times
Teacher	What's __ times __?
Students	
Teacher	IF REGROUPING: Remember, we regrouped __ from when we multiplied the tenths of the second factor by the tenths of the first factor. Now, we add that regrouped amount to our product of \qquad times \qquad . So, what's \qquad plus \qquad ?
Students	
Teacher	Let's write \qquad below the equal line in the ones column. (Write product.)
Teacher	So, we multiplied the tenths of the second factor times the tenths of the first factor then the tenths of the second factor times the ones of the first factor. Who can describe what we multiplied so far?
Students	We multiplied the tenths of the second factor times the tenths of the first factor then the tenths of the second factor times the ones of the first factor.
Teacher	We've multiplied the tenths of the second factor. Now, it's time to multiply the ones of the second factor. What will we multiply now?
Students	The ones of the second factor.
Teacher	When writing the products of multiplying the ones of the second factor, we'll write them below this first line of products. Because we're now multiplying the ones, we will write our products starting in the ones column. I like to place an X or zero in the tenths column below the equal line to remember to start writing my products in the ones column. (Write X or 0 .)
Teacher	Now, let's multiply the ones of the second factor times the tenths of the first factor. What should we multiply?
Students	The ones of the second factor times the tenths of the first factor.
Teacher	What numbers do we multiply?
Students	_ times
Teacher	What's \qquad times ? \qquad (If a student has difficulty with multiplication, use a multiplication table or other resource.)
Students	
Teacher	\qquad times \qquad equals \qquad . Let's write \qquad below the equal line in the ones column. IF REGROUPING: Our product is greater than 9 , so we have to regroup. That means we write the ones and regroup the tens above the problem.
	(Write product.)
Teacher	Now, we multiply the ones of the second factor times the ones of the first factor. What do we multiply?

Students
Teacher
Students
Teacher Students Teacher

Students Teacher

Teacher

Students

Teacher
Students
Teacher
Students
Teacher
Teacher

Students
Teacher

The ones of the second factor times the ones of the first factor.
So, what do we multiply?
\qquad times \qquad What's \qquad
\qquad
\qquad -.
IF REGROUPING:
Remember, we regrouped \qquad from when we multiplied the ones of the second factor by the tenths of the first factor. Now, we add that regrouped amount to our product of _ times __. So, what's __ plus __?
\qquad -.
Let's write __ below the equal line.
(Write product.)
So, we multiplied the ones of the second factor times the tenths of the first factor and then the ones of the second factor times the ones of the first factor. Who can describe what we multiplied?
We multiplied the ones of the second factor times the tenths of the first factor then the ones of the second factor times the ones of the first factor. Now, we did all the multiplication but we are not finished! We call these numbers here (point to numbers under equal line) our partial products. We have to add the partial products together to determine the final product. Let's draw another equal line and write in a plus sign. What should we draw?
An equal line and plus sign.
(Write equal line and plus sign.)
So, let's add __ plus __. What's __ plus __? (If students need help with addition of whole numbers, see Module 5.)

Students Teacher

Teacher Students Teacher Students
\qquad
Yes. So, I write __ under the equal line.
(Write final product.)
Now, we seem finished but we're not. In this problem, we multiplied decimals. So, we have to place the decimal point in the product. What do we have to place in the product?
A decimal point.
To place the decimal point, we determine the number of decimal places in the two factors. Let's see. The first factor had __ decimal place. The second factor also had __ decimal place. What's __ plus __?
\qquad
So, in the product, we need to put in \qquad decimal places starting from the least place value (or the right). That means I'll place a decimal point between the
\qquad and \qquad
(Write decimal point.)
So, __ times __ equals __. What's the product?
\qquad
Let's say it together again.
\qquad times \qquad equals \qquad .

Teacher So, if you have __ and multiply by _ , the product is __ _ times __ equals _. Let's review. What's a factor?
Students One of the numbers multiplied in a multiplication problem.
Teacher What's a product?
Students The result of multiplying factors.
Teacher What does it mean to make equal groups?
Students To have groups with an equal number in each group.
Teacher How could you explain multiplication of double-digit numbers to a friend?
Students We multiplied the tenths of the second factor times the tenths and ones of the first factor. Then, we multiplied the ones of the second factor times the tenths and ones of the first factor. Finally, we added the partial products to determine the final product. We multiplied two decimal places so we added in a decimal point two decimal places from the right of the number.

Example

7.3
$\times \quad 6.1$
44.53

2-DIGIT $\times 2$-DIGIT: EXAMPLE WITHOUT MANIPULATIVES

Teacher	Let's work on multiplication. What does it mean to multiply? Students Teacher
To make equal groups or to compare. Multiplication means to make equal groups or to compare. Look at this problem. (Show problem.)	
Teacher	First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students	To multiply. Let's do this problem with our pencil. First, when I see a problem like this that
Teacher	
requires computation, I like to draw vertical lines to separate the ones and	
the tenths. Let's draw a vertical line between the ones column and the tenths	
column.	
(Draw vertical lines to separate place value columns.)	

Teacher	What's 1 times 3? (If a student has difficulty with multiplication, use a multiplication table or other resource.)
Students	3.
Teacher	1 times 3 equals 3 . Let's write 3 below the equal line in the tenths column. (Write 3.)
Teacher	Now, we multiply the tenths of the second factor times the ones of the first factor. What do we multiply?
Students	The tenths of the second factor times the ones of the first factor.
Teacher	So, what do we multiply?
Students	1 times 7.
Teacher	What's 1 times 7?
Students	7.
Teacher	Let's write $\mathbf{7}$ below the equal line in the ones column. (Write product.)
Teacher	So, we multiplied the tenths of the second factor times the tenths of the first factor then the tenths of the second factor times the ones of the first factor. Who can describe what we multiplied so far?
Students	We multiplied the tenths of the second factor times the tenths of the first factor then we multiplied the tenths of the second factor times the ones of the first factor.
Teacher	We've multiplied the tenths of the second factor. Now, it's time to multiply the ones of the second factor. What will we multiply now?
Students	The ones of the second factor.
Teacher	When writing the products of multiplying the ones of the second factor, we'll write them below this first line of products. Because we're now multiplying the ones, we will write our products starting in the ones column. I like to place an X or zero in the tenths column below the equal line to remember to start writing my products in the ones column. (Write X or 0.)
Teacher	Now, let's multiply the ones of the second factor times the tenths of the first factor. What should we multiply?
Students	The ones of the second factor times the tenths of the first factor.
Teacher	What numbers do we multiply?
Students	6 times 3.
Teacher	What's 6 times 3 ? (If a student has difficulty with multiplication, use a multiplication table or other resource.)
Students	18.
Teacher	6 times 3 equals 18. Let's write 8 below the equal line in the ones column and regroup the 1. (Write 8 and regroup the 1.)
Teacher	Now, we multiply the ones of the second factor times the ones of the first factor. What do we multiply?

Students	The ones of the second factor times the ones of the first factor.
Teacher	So, what do we multiply?
Students	6 times 7.
Teacher	What's 6 times 7?
Students	42.
	Remember, we regrouped 1 from when we multiplied the ones of the second factor by the tenths of the first factor. Now, we add that regrouped amount to our product of 42 . So, what's 42 plus 1?
Students	43.
Teacher	Let's write 43 below the equal line. (Write 43.)
Teacher	So, we multiplied the ones of the second factor times the tenths of the first factor and then the ones of the second factor times the ones of the first factor. Who can describe what we multiplied?
Students	We multiplied the ones of the second factor times the tenths of the first factor then we multiplied the ones of the second factor times the ones of the first factor.
Teacher	Now, we did all the multiplication but we are not finished! We call these numbers here (point to numbers under equal line) our partial products. We have to add the partial products together to determine the final product. Let's draw another equal line and write in a plus sign. What should we draw?
Students	An equal line and plus sign. (Write equal line and plus sign.)
Teacher	So, let's add $\mathbf{7 3}$ plus $\mathbf{4 3 8 0}$. What's $\mathbf{7 3}$ plus $\mathbf{4 3 8 0}$? (If students need help with addition of whole numbers, see Module 5.)
Students	4453.
Teacher	Yes. So, I write 4453 under the equal line. (Write 4453.)
Teacher	Now, are we finished?
Students	No!
Teacher	We seem finished but we're not. In this problem, we multiplied decimals. So, we have to place the decimal point in the product. What do we have to place in the product?
Students	A decimal point.
Teacher	To place the decimal point, we determine the number of decimal places in the two factors. Let's see. The first factor had 1 decimal place. The second factor also had 1 decimal place. What's 1 plus 1 ?
Students	2.
Teacher	So, in the product, we need to put in 2 decimal places starting from the right of the number. That means I'll place a decimal point between the 4 and 5 . (Write decimal point.)
Teacher	So, 7.3 times 6.1 equals 44.53. Let's say that together.
Students	7.3 times 6.1 equals 44.53 .
Teacher	Let's say it together again.

Students	7.3 times 6.1 equals 44.53 .
Teacher	So, if you have 7.3 and multiply by 6.1 , the product is 44.53 . Let's review. What's a factor?
Students	One of the numbers multiplied in a multiplication problem.
Teacher	What's a product?
Students	The result of multiplying factors.
Teacher	What does it mean to make equal groups?
Students	To have groups with an equal number in each group.
Teacher	How could you explain multiplication of double-digit numbers to a friend?
Students	We multiplied the tenths of the second factor times the tenths and ones of the first factor. Then, we multiplied the ones of the second factor times the tenths and ones of the first factor. Finally, we added the partial products to determine the final product. We placed in the decimal point because we multiplied by two decimals.

(3) Multiplication with Partial Products Algorithm*

*For clarity, read Example before using Routines.

Routine

Materials:

- Module 12 Problem Sets
- Module 12 Vocabulary Cards
- If necessary, review Vocabulary Cards before teaching

2-DIGIT × 2-DIGIT: ROUTINE WITHOUT MANIPULATIVES

Teacher Students	Let's work on multiplication. What does it mean to multiply? Teacher make equal groups or to compare.
	Multiplication means to make equal groups or to compare. Look at this problem. (Show problem.)
Teacher	First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean?
Students	To multiply. Let's do this problem with our pencil. First, when I see a problem like this that
Teacher	
requires computation, I like to draw vertical lines to separate the ones from	
the tenths. Let's draw a vertical line between the ones column and the tenths	
column.	

Teacher	\qquad times \qquad equals \qquad . Let's write \qquad below the equal line and make sure to line up by place value.
	(Write product.)
Teacher	\qquad is our first partial product. Now, let's multiply the ones of the second factor times the tenths of the first factor? What do we multiply?
Students	_ times _ .
Teacher	What's __ times __?
Students	
Teacher	Let's write \qquad below the equal line. We'll write this second partial product under the first partial product and make sure to line up by place value. That is - line up tens with tens, ones with ones, tenths with tenths, and hundredths with hundredths. (Write product.)
Teacher	Now, let's multiply the tenths of the second factor times the ones of the first factor and tenths of the first factor. Let's do that now. What are the tenths of the second factor?
Students	
Teacher	We have \qquad tenths in the second factor. Look at the first factor. What are the ones of the first factor?
Students	
Teacher	We have __ ones in the first factor. How many ones?
Students	
	So, let's multiply _ times __. What's _ times _ ?
Students	
Teacher	\qquad times \qquad equals \qquad . Let's write \qquad below the equal line under our other partial products and make sure to line up by place value. (Write product.)
Teacher	Finally, let's multiply the tenths of the second factor times the tenths of the first factor. What do we multiply?
Students	_ times __.
Teacher	What's __ times __?
Students	
Teacher	Let's write \qquad below the equal line under our other partial products and make sure to line up by place value. (Write product.)
Teacher	To determine the final product, we add all the partial products together. I'll write a plus sign and another equal line. (Write plus sign and equal line.)
Teacher	So, what's \qquad plus \qquad plus \qquad plus ? \qquad (For assistance with the partial sums algorithm for addition, see Module 5.)
Students	
Teacher	__ is our final product. Let's write _ under the equal line.
Students	(Write product.)
Teacher	That means __ times _ equals __. Let's say that together.

Students	s __ equals
Teacher	Let's say it together again.
Students	es equals
Teacher	So, if you have \qquad groups and multiply by \qquad , the product is \qquad times \qquad equals __. Let's review. What's a factor?
Students	The numbers multiplied in a multiplication problem.
Teacher	What's a product?
Students	The result of multiplying factors.
Teacher	How could you explain multiplying to a friend?
Students	We multiplied the ones of the second factor times the ones and tenths of the first factor. Then, we multiplied the tenths of the second factor times the ones and tenths of the first factor. We added the partial products to determine the final product.

Example

7.3
$\times \quad 6.1$
42
1.8
0.7
$+\quad 0.03$
44.53

2-DIGIT × 2-DIGIT: EXAMPLE WITHOUT MANIPULATIVES

Teacher
Students
Teacher

Teacher First, I see a multiplication sign (point). The multiplication sign tells us to multiply. What does the multiplication sign mean? To multiply.
Teacher Let's do this problem with our pencil. First, when I see a problem like this that requires computation, I like to draw vertical lines to separate the ones from the tenths. Let's draw a vertical line between the ones column and the tenths column.
(Draw vertical lines to separate place value columns.) Let's use the partial products strategy. What strategy?
Students Partial products.
Teacher With the partial products strategy, we do the multiplication for each factor then we add the partial products together for a final product. With the partial
Let's work on multiplication. What does it mean to multiply?
To make equal groups or to compare.
Multiplication means to make equal groups or to compare. Look at this problem.
(Show problem.)

Students

Teacher

I N T E X A S
products strategy, we work from the greatest place value to the least place value. How do we work?
Students From the greatest place value to the least place value.
Teacher First, we'll multiply the ones of the second factor times the ones of the first factor and tenths of the first factor. Let's do that now. What are the ones of the second factor?
Students 6.

Teacher
Students
Teacher
Students
Teacher
We have 6 ones in the second factor. How many ones?
6.

Students
Students
Teacher
Look at the first factor. What are the ones of the first factor?
7.

We have 7 ones in the first factor. How many ones?
So, let's multiply 6 times $\mathbf{7}$. What's 6 times $\mathbf{7}$?
Teacher 6 times 7 equals 42 . Let's write 42 below the equal line and make sure to place the $\mathbf{2}$ in the ones column and 4 in the tens column.
(Write 42.)
Teacher $\quad 42$ is our first partial product. Now, let's multiply the ones of the second factor times the tenths of the first factor. What do we multiply?
Students 6 times 0.3.
Teacher What's 6 times 0.3?
Students 1.8.
Teacher Let's write 1.8 below the equal line. We'll write this partial product under the first partial product. We'll write the 1 in the ones column and 0.8 in the tenths column.
(Write 1.8.)
Teacher Now, let's multiply the tenths of the second factor times the ones of the first factor and tenths of the first factor. Let's do that now. What are the tenths of the second factor?
Students 0.1.
Teacher We have 0.1 in the second factor. Look at the first factor. What are the ones of the first factor?
Students 7.
So, let's multiply 0.1 times $\mathbf{7}$. What's 0.1 times $\mathbf{7}$?
Students 0.7.
Teacher $\quad 0.1$ times 7 equals 0.7 . Let's write 0.7 below the equal line under our other partial products. Let's make sure to write the $\mathbf{7}$ in the tenths column. (Write 0.7.)
Teacher Finally, let's multiply the tenths of the second factor times the tenths of the first factor. What do we multiply?
Students $\quad 0.1$ times 0.3 .
Teacher What's 0.1 times 0.3 ?
Students 0.03.

Teacher	Let's write 0.03 below the equal line under our other partial products. Let's make sure to write the 3 in the hundredths column. (Write 0.03.)
Teacher	To determine the final product, we add all the partial products together. I'll write a plus sign and another equal line. (Write plus sign and equal line.)
Teacher	I like to add in steps. What's 42 plus 1.8?
Students	43.8 .
Teacher	What's 43.8 plus 0.7?
Students	44.5 .
Teacher	What's 44.5 plus 0.03?
Students	44.53.
Teacher	44.53 is our final product. Let's write 44.53 under the equal line.
Students	(Write product.)
Teacher	That means 7.3 times 6.1 equals $\mathbf{4 4 . 5 3}$. Let's say that together.
Students	7.3 times 6.1 equals 44.53 .
Teacher	So, if you have 7.3 and multiply by 6.1 , the product is 44.53 . Let' review. What's a factor?
Students	The numbers multiplied in a multiplication problem.
Teacher	What's a product?
Students	The result of multiplying factors.
Teacher	What does it mean to use the partial products strategy?
Students	We multiplied each factor for a partial product. Then, we added the partial products to determine the final product.
Teacher	How could you explain multiplying to a friend?
Students	We multiplied 6 times 7 then 6 times 0.3 . Then, we multiplied 0.1 times 7 then 0.1 times 0.03 . We added the partial products for a final product of 44.53 .

D. Problems for Use During Instruction

See Module 12 Problem Sets.

E. Vocabulary Cards for Use During Instruction

See Module 12 Vocabulary Cards.

Developed by:

Sarah R. Powell (srpowell@austin.utexas.edu)
Katherine A. Berry (kberry@austin.utexas.edu)

Module 12: Multiplication of Rational Numbers

Problem Sets

A. Proper fractions (30)
B. Improper fractions (20)
C. Mixed numbers (20)
D. Decimals with tenths (20)
E. Decimals with hundredths (20)
F. Decimals with tenths and hundredths (30)

$$
\frac{2}{3} \times \frac{1}{2}=
$$

A.

;
 $\frac{1}{3}$

ن

ن

ن

3
 $\times 4 \frac{6}{9}=$

D.

D.

\times

D.

D.

D.

D.

\times

D.

x

D.

$$
\begin{array}{r}
6.4 \\
\times \quad 8.8
\end{array}
$$

D.
0.3

D.

\times
8.4

D.

D.

D.

\times

D.

D.
6.3

D.

\times

D.

D.

D.

D.

x

$$
x
$$

$$
\begin{aligned}
& 4.43 \\
& 3.87
\end{aligned}
$$

X

$$
0.13
$$

$$
\begin{array}{r}
0.73 \\
\times \quad 0.49
\end{array}
$$

$$
\begin{aligned}
& 1.92 \\
& 4.58
\end{aligned}
$$

14.21 0.53

x

0.68

x

x

x

4.0

x

x

13.15
 0.4

\times

$$
x
$$

$$
\begin{array}{r}
0.92 \\
0.5
\end{array}
$$

$$
x
$$

$$
\begin{array}{r}
0.38 \\
1.7
\end{array}
$$

X

x

Module 12: Multiplication of Rational Numbers

Vocabulary Cards

algorithm
decimal
denominator
equal groups
equal sign
equivalent
factor
fraction
hundredths
improper fraction
least common multiple mixed number multiply/multiplication multiplication sign
numerator
ones
partial products
product
regroup/trade/exchange tenths

algorithm

A set of steps to solve a problem.

decimal

A number based on powers of ten.

denominator

The term in a fraction that tells the number of equal parts in a whole.

$$
2 / 3 \frac{2}{3} \text { In these fractions, } 3 \text { is the denominator. }
$$

equal groups

Groups with the same number of objects or items in each group.

equal sign

The symbol that tells you that two sides of an equation are the same, balanced, or equal.

$$
\begin{gathered}
2 \times 8=16 \\
=\text { is the equal sign }
\end{gathered}
$$

equivalent

Two numbers that have the same value.

$$
\frac{1}{4}=\frac{2}{8} \quad \frac{2}{3}=\frac{8}{12}
$$

factor

A number that you multiply with another number to get the product.

$$
\begin{gathered}
2 \times 8=16 \\
2 \text { and } 8 \text { are the factors }
\end{gathered}
$$

fraction

A number representing part of a whole or set.

$$
\frac{3}{6} \quad \frac{10}{12} \quad \frac{8}{3}
$$

hundredths

The digit in representing $\frac{1}{100}$.
In the number 4.23, 3 is in the hundredths place.

improper fraction

Any fraction in which the numerator is greater than the denominator.

$$
\frac{9}{4} \quad \frac{17}{12} \quad \frac{10}{3}
$$

mixed number

A whole number and a fraction combined.

$$
1 \frac{1}{6} \quad 4 \frac{5}{12} \quad 12 \frac{4}{3}
$$

multiply/multiplication

The process of adding a number to itself a number of times.

multiplication sign

The symbol that tells you to multiply.

$2 \times 8=16$
 \times is the multiplication sign

numerator

The term in a fraction that tells how many parts of a fraction.
$2 / 3 \frac{2}{3} \quad$ In these fractions, 2 is the numerator.

ones

The digit representing 1.
In the number 4.23, 4 is in the ones place.

partial products

The product of parts of each factor.

$$
\begin{array}{r}
13 \\
\times \quad 45 \\
\hline 400(40 \times 10) \\
120(40 \times 3) \\
50(10 \times 5) \\
+\quad 15(5 \times 3) \\
\hline 585
\end{array}
$$

product

The result of multiplying two or more factors.

$$
\begin{gathered}
2 \times 8=16 \\
16 \text { is the product }
\end{gathered}
$$

regroup/trade/exchange

The process of exchanging 10 ones for 1 ten, 10 tens for 1 hundred, 10 hundreds for 1 thousand, etc.

tenths

The digit in representing $\frac{1}{10}$.
In the number 4.23, 2 is in the tenths place.

